Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 213(2): 916-928, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27468091

RESUMO

B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.


Assuntos
Proteínas Argonautas/metabolismo , Cromossomos de Plantas/genética , Proteínas de Plantas/metabolismo , Secale/genética , Sequência de Bases , Núcleo Celular/metabolismo , Cromatina/metabolismo , Simulação por Computador , RNA Polimerases Dirigidas por DNA/metabolismo , Amplificação de Genes , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Secale/enzimologia , Transcrição Gênica
2.
Chromosome Res ; 24(3): 393-405, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294972

RESUMO

Holocentric chromosomes occur in a number of independent eukaryotic lineages, and they form holokinetic kinetochores along the entire poleward chromatid surfaces. Due to this alternative chromosome structure, Luzula elegans sister chromatids segregate already in anaphase I followed by the segregation of the homologues in anaphase II. However, not yet known is the localization and dynamics of cohesin and the structure of the synaptonemal complex (SC) during meiosis. We show here that the α-kleisin subunit of cohesin localizes at the centromeres of both mitotic and meiotic metaphase chromosomes and that it, thus, may contribute to assemble the centromere in L. elegans. This localization and the formation of a tripartite SC structure indicate that the prophase I behaviour of L. elegans is similar as in monocentric species.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Magnoliopsida/genética , Meiose/genética , Prófase Meiótica I/genética , Proteínas de Plantas/metabolismo , Complexo Sinaptonêmico/ultraestrutura , Autoantígenos/genética , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteína Centromérica A , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Cromossomos/genética , Cinetocoros/metabolismo , Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Análise de Sequência de DNA , Coesinas
3.
Funct Integr Genomics ; 13(3): 339-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23812960

RESUMO

Gene order is largely collinear in the small-grained cereals, a feature which has proved helpful in both marker development and positional cloning. The accuracy of a virtual gene order map ("genome zipper") for barley (Hordeum vulgare), developed by combining a genetic map of this species with a large number of gene locations obtained from the maps constructed in other grass species, was evaluated here both at the genome-wide level and at the fine scale in a representative segment of the genome. Comparing the whole genome "genome zipper" maps with a genetic map developed by using transcript-derived markers, yielded an accuracy of >94 %. The fine-scale comparison involved a 14 cM segment of chromosome arm 2HL. One hundred twenty-eight genes of the "genome zipper" interval were analysed. Over 95 % (45/47) of the polymorphic markers were genetically mapped and allocated to the expected region of 2HL, following the predicted order. A further 80 of the 128 genes were assigned to the correct chromosome arm 2HL by analysis of wheat-barley addition lines. All 128 gene-based markers developed were used to probe a barley bacterial artificial chromosome (BAC) library, delivering 26 BAC contigs from which all except two were anchored to the targeted zipper interval. The results demonstrate that the gene order predicted by the "genome zipper" is remarkably accurate and that the "genome zipper" represents a highly efficient informational resource for the systematic identification of gene-based markers and subsequent physical map anchoring of the barley genome.


Assuntos
Genoma de Planta , Hordeum/genética , Mapeamento Físico do Cromossomo , Sintenia/genética , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Oryza/genética , Triticum/genética
4.
Proc Natl Acad Sci U S A ; 109(33): 13343-6, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847450

RESUMO

Supernumerary B chromosomes are optional additions to the basic set of A chromosomes, and occur in all eukaryotic groups. They differ from the basic complement in morphology, pairing behavior, and inheritance and are not required for normal growth and development. The current view is that B chromosomes are parasitic elements comparable to selfish DNA, like transposons. In contrast to transposons, they are autonomously inherited independent of the host genome and have their own mechanisms of mitotic or meiotic drive. Although B chromosomes were first described a century ago, little is known about their origin and molecular makeup. The widely accepted view is that they are derived from fragments of A chromosomes and/or generated in response to interspecific hybridization. Through next-generation sequencing of sorted A and B chromosomes, we show that B chromosomes of rye are rich in gene-derived sequences, allowing us to trace their origin to fragments of A chromosomes, with the largest parts corresponding to rye chromosomes 3R and 7R. Compared with A chromosomes, B chromosomes were also found to accumulate large amounts of specific repeats and insertions of organellar DNA. The origin of rye B chromosomes occurred an estimated ∼1.1-1.3 Mya, overlapping in time with the onset of the genus Secale (1.7 Mya). We propose a comprehensive model of B chromosome evolution, including its origin by recombination of several A chromosomes followed by capturing of additional A-derived and organellar sequences and amplification of B-specific repeats.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/genética , Mosaicismo , Organelas/genética , Secale/genética , Sequência de Bases , Centrômero/genética , Genes de Plantas/genética , Hibridização in Situ Fluorescente , Metáfase/genética , Modelos Genéticos , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...